Private Federated Learning with Dynamic Power Control via Non-Coherent Over-the-Air Computation

5 Aug 2023  ·  Anbang Zhang, Shuaishuai Guo, Shuai Liu ·

To further preserve model weight privacy and improve model performance in Federated Learning (FL), FL via Over-the-Air Computation (AirComp) scheme based on dynamic power control is proposed. The edge devices (EDs) transmit the signs of local stochastic gradients by activating two adjacent orthogonal frequency division multi-plexing (OFDM) subcarriers, and majority votes (MVs) at the edge server (ES) are obtained by exploiting the energy accumulation on the subcarriers. Then, we propose a dynamic power control algorithm to further offset the biased aggregation of the MV aggregation values. We show that the whole scheme can mitigate the impact of the time synchronization error, channel fading and noise. The theoretical convergence proof of the scheme is re-derived.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here