Privado: Practical and Secure DNN Inference with Enclaves

1 Oct 2018  ·  Karan Grover, Shruti Tople, Shweta Shinde, Ranjita Bhagwan, Ramachandran Ramjee ·

Cloud providers are extending support for trusted hardware primitives such as Intel SGX. Simultaneously, the field of deep learning is seeing enormous innovation as well as an increase in adoption. In this paper, we ask a timely question: "Can third-party cloud services use Intel SGX enclaves to provide practical, yet secure DNN Inference-as-a-service?" We first demonstrate that DNN models executing inside enclaves are vulnerable to access pattern based attacks. We show that by simply observing access patterns, an attacker can classify encrypted inputs with 97% and 71% attack accuracy for MNIST and CIFAR10 datasets on models trained to achieve 99% and 79% original accuracy respectively. This motivates the need for PRIVADO, a system we have designed for secure, easy-to-use, and performance efficient inference-as-a-service. PRIVADO is input-oblivious: it transforms any deep learning framework that is written in C/C++ to be free of input-dependent access patterns thus eliminating the leakage. PRIVADO is fully-automated and has a low TCB: with zero developer effort, given an ONNX description of a model, it generates compact and enclave-compatible code which can be deployed on an SGX cloud platform. PRIVADO incurs low performance overhead: we use PRIVADO with Torch framework and show its overhead to be 17.18% on average on 11 different contemporary neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here