Privacy Protectability: An Information-theoretical Approach

25 May 2023  ·  Siping Shi, Bihai Zhang, Dan Wang ·

Recently, inference privacy has attracted increasing attention. The inference privacy concern arises most notably in the widely deployed edge-cloud video analytics systems, where the cloud needs the videos captured from the edge. The video data can contain sensitive information and subject to attack when they are transmitted to the cloud for inference. Many privacy protection schemes have been proposed. Yet, the performance of a scheme needs to be determined by experiments or inferred by analyzing the specific case. In this paper, we propose a new metric, \textit{privacy protectability}, to characterize to what degree a video stream can be protected given a certain video analytics task. Such a metric has strong operational meaning. For example, low protectability means that it may be necessary to set up an overall secure environment. We can also evaluate a privacy protection scheme, e.g., assume it obfuscates the video data, what level of protection this scheme has achieved after obfuscation. Our definition of privacy protectability is rooted in information theory and we develop efficient algorithms to estimate the metric. We use experiments on real data to validate that our metric is consistent with empirical measurements on how well a video stream can be protected for a video analytics task.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here