Prioritize Team Actions: Multi-Agent Temporal Logic Task Planning with Ordering Constraints

26 Mar 2024  ·  Bowen Ye, Jianing Zhao, ShaoYuan Li, Xiang Yin ·

In this paper, we investigate the problem of linear temporal logic (LTL) path planning for multi-agent systems, introducing the new concept of \emph{ordering constraints}. Specifically, we consider a generic objective function that is defined for the path of each individual agent. The primary objective is to find a global plan for the team of agents, ensuring they collectively meet the specified LTL requirements. Simultaneously, we aim to maintain a pre-determined order in the values of the objective function for each agent, which we refer to as the ordering constraints. This new requirement stems from scenarios like security-aware planning, where relative orders outweigh absolute values in importance. We present an efficient algorithm to solve this problem, supported by proofs of correctness that demonstrate the optimality of our solution. Additionally, we provide a case study in security-aware path planning to illustrate the practicality and effectiveness of our proposed approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here