Predictive Local Smoothness for Stochastic Gradient Methods

ICLR 2019  ·  Jun Li, Hongfu Liu, Bineng Zhong, Yue Wu, Yun Fu ·

Stochastic gradient methods are dominant in nonconvex optimization especially for deep models but have low asymptotical convergence due to the fixed smoothness. To address this problem, we propose a simple yet effective method for improving stochastic gradient methods named predictive local smoothness (PLS). First, we create a convergence condition to build a learning rate which varies adaptively with local smoothness. Second, the local smoothness can be predicted by the latest gradients. Third, we use the adaptive learning rate to update the stochastic gradients for exploring linear convergence rates. By applying the PLS method, we implement new variants of three popular algorithms: PLS-stochastic gradient descent (PLS-SGD), PLS-accelerated SGD (PLS-AccSGD), and PLS-AMSGrad. Moreover, we provide much simpler proofs to ensure their linear convergence. Empirical results show that the variants have better performance gains than the popular algorithms, such as, faster convergence and alleviating explosion and vanish of gradients.

PDF Abstract ICLR 2019 PDF ICLR 2019 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods