Predicting Single-cell Drug Sensitivity by Adaptive Weighted Feature for Adversarial Multi-source Domain Adaptation

8 Mar 2024  ·  Wei Duan, Hui Liu ·

The development of single-cell sequencing technology had promoted the generation of a large amount of single-cell transcriptional profiles, providing valuable opportunities to explore drug-resistant cell subpopulations in a tumor. However, the drug sensitivity data in single-cell level is still scarce to date, pressing an urgent and highly challenging task for computational prediction of the drug sensitivity to individual cells. This paper proposed scAdaDrug, a multi-source adaptive weighting model to predict single-cell drug sensitivity. We used an autoencoder to extract domain-invariant features related to drug sensitivity from multiple source domains by exploiting adversarial domain adaptation. Especially, we introduced an adaptive weight generator to produce importance-aware and mutual independent weights, which could adaptively modulate the embedding of each sample in dimension-level for both source and target domains. Extensive experimental results showed that our model achieved state-of-the-art performance in predicting drug sensitivity on sinle-cell datasets, as well as on cell line and patient datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods