Practical Black-box Attacks on Deep Neural Networks using Efficient Query Mechanisms

ECCV 2018  ·  Arjun Nitin Bhagoji, Warren He, Bo Li, Dawn Song ·

Existing black-box attacks on deep neural networks (DNNs) have largely focused on transferability, where an adversarial instance generated for a locally trained model can “transfer” to attack other learning models. In this paper, we propose novel Gradient Estimation black-box attacks for adversaries with query access to the target model’s class probabilities, which do not rely on transferability. We also propose strategies to decouple the number of queries required to generate each adversarial sample from the dimensionality of the input. An iterative variant of our attack achieves close to 100% attack success rates for both targeted and untargeted attacks on DNNs. We carry out a thorough comparative evaluation of black-box attacks and show that Gradient Estimation attacks achieve attack success rates similar to state-of-the-art white-box attacks on the MNIST and CIFAR-10 datasets. We also apply the Gradient Estimation attacks successfully against real-world classifiers hosted by Clarifai. Further, we evaluate black-box attacks against state-of-the-art defenses based on adversarial training and show that the Gradient Estimation attacks are very effective even against these defenses.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here