POPQORN: Quantifying Robustness of Recurrent Neural Networks

17 May 2019  ·  Ching-Yun Ko, Zhaoyang Lyu, Tsui-Wei Weng, Luca Daniel, Ngai Wong, Dahua Lin ·

The vulnerability to adversarial attacks has been a critical issue for deep neural networks. Addressing this issue requires a reliable way to evaluate the robustness of a network. Recently, several methods have been developed to compute $\textit{robustness quantification}$ for neural networks, namely, certified lower bounds of the minimum adversarial perturbation. Such methods, however, were devised for feed-forward networks, e.g. multi-layer perceptron or convolutional networks. It remains an open problem to quantify robustness for recurrent networks, especially LSTM and GRU. For such networks, there exist additional challenges in computing the robustness quantification, such as handling the inputs at multiple steps and the interaction between gates and states. In this work, we propose $\textit{POPQORN}$ ($\textbf{P}$ropagated-$\textbf{o}$ut$\textbf{p}$ut $\textbf{Q}$uantified R$\textbf{o}$bustness for $\textbf{RN}$Ns), a general algorithm to quantify robustness of RNNs, including vanilla RNNs, LSTMs, and GRUs. We demonstrate its effectiveness on different network architectures and show that the robustness quantification on individual steps can lead to new insights.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods