Policy Optimization in RLHF: The Impact of Out-of-preference Data

17 Dec 2023  ·  Ziniu Li, Tian Xu, Yang Yu ·

Aligning intelligent agents with human preferences and values is important. This paper examines two popular alignment methods: Direct Preference Optimization (DPO) and Reward-Model-Based Policy Optimization (RMB-PO). A variant of RMB-PO, referred to as RMB-PO+ is also considered. These methods, either explicitly or implicitly, learn a reward model from preference data and differ in the data used for policy optimization to unlock the generalization ability of the reward model. In particular, compared with DPO, RMB-PO additionally uses policy-generated data, and RMB-PO+ further leverages new, preference-free data. We examine the impact of such out-of-preference data. Our study, conducted through controlled and synthetic experiments, demonstrates that DPO performs poorly, whereas RMB-PO+ performs the best. In particular, even when providing the policy model with a good feature representation, we find that policy optimization with adequate out-of-preference data significantly improves performance by harnessing the reward model's generalization capabilities.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here