Planted Bipartite Graph Detection

7 Feb 2023  ·  Asaf Rotenberg, Wasim Huleihel, Ofer Shayevitz ·

We consider the task of detecting a hidden bipartite subgraph in a given random graph. This is formulated as a hypothesis testing problem, under the null hypothesis, the graph is a realization of an Erd\H{o}s-R\'{e}nyi random graph over $n$ vertices with edge density $q$. Under the alternative, there exists a planted $k_{\mathsf{R}} \times k_{\mathsf{L}}$ bipartite subgraph with edge density $p>q$. We characterize the statistical and computational barriers for this problem. Specifically, we derive information-theoretic lower bounds, and design and analyze optimal algorithms matching those bounds, in both the dense regime, where $p,q = \Theta\left(1\right)$, and the sparse regime where $p,q = \Theta\left(n^{-\alpha}\right), \alpha \in \left(0,2\right]$. We also consider the problem of testing in polynomial-time. As is customary in similar structured high-dimensional problems, our model undergoes an "easy-hard-impossible" phase transition and computational constraints penalize the statistical performance. To provide an evidence for this statistical computational gap, we prove computational lower bounds based on the low-degree conjecture, and show that the class of low-degree polynomials algorithms fail in the conjecturally hard region.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here