Physics informed WNO

12 Feb 2023  ·  Navaneeth N, Tapas Tripura, Souvik Chakraborty ·

Deep neural operators are recognized as an effective tool for learning solution operators of complex partial differential equations (PDEs). As compared to laborious analytical and computational tools, a single neural operator can predict solutions of PDEs for varying initial or boundary conditions and different inputs. A recently proposed Wavelet Neural Operator (WNO) is one such operator that harnesses the advantage of time-frequency localization of wavelets to capture the manifolds in the spatial domain effectively. While WNO has proven to be a promising method for operator learning, the data-hungry nature of the framework is a major shortcoming. In this work, we propose a physics-informed WNO for learning the solution operators of families of parametric PDEs without labeled training data. The efficacy of the framework is validated and illustrated with four nonlinear spatiotemporal systems relevant to various fields of engineering and science.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here