Physics-guided Data Augmentation for Learning the Solution Operator of Linear Differential Equations

8 Dec 2022  ·  Ye Li, Yiwen Pang, Bin Shan ·

Neural networks, especially the recent proposed neural operator models, are increasingly being used to find the solution operator of differential equations. Compared to traditional numerical solvers, they are much faster and more efficient in practical applications. However, one critical issue is that training neural operator models require large amount of ground truth data, which usually comes from the slow numerical solvers. In this paper, we propose a physics-guided data augmentation (PGDA) method to improve the accuracy and generalization of neural operator models. Training data is augmented naturally through the physical properties of differential equations such as linearity and translation. We demonstrate the advantage of PGDA on a variety of linear differential equations, showing that PGDA can improve the sample complexity and is robust to distributional shift.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here