Physics-Constrained Predictive Molecular Latent Space Discovery with Graph Scattering Variational Autoencoder

29 Sep 2020  ·  Navid Shervani-Tabar, Nicholas Zabaras ·

Recent advances in artificial intelligence have propelled the development of innovative computational materials modeling and design techniques. Generative deep learning models have been used for molecular representation, discovery, and design. In this work, we assess the predictive capabilities of a molecular generative model developed based on variational inference and graph theory in the small data regime. Physical constraints that encourage energetically stable molecules are proposed. The encoding network is based on the scattering transform with adaptive spectral filters to allow for better generalization of the model. The decoding network is a one-shot graph generative model that conditions atom types on molecular topology. A Bayesian formalism is considered to capture uncertainties in the predictive estimates of molecular properties. The model's performance is evaluated by generating molecules with desired target properties.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here