Photonic-enabled radio-frequency self-interference cancellation incorporated in an in-band full-duplex radio-over-fiber system

1 Sep 2021  ·  Taixia Shi, Yu Chen, Yang Chen ·

A photonic approach for radio-frequency (RF) self-interference cancellation (SIC) incorporated in an in-band full-duplex radio-over-fiber system is proposed. A dual-polarization binary phase-shift keying modulator is used for dual-polarization multiplexing at the central office (CO). A local oscillator signal and an intermediate-frequency signal carrying the downlink data are single-sideband modulated on the two polarization directions of the modulator, respectively. The optical signal is then transmitted to the remote unit, where the optical signals in the two polarization directions are split into two parts. One part is detected to generate the up-converted downlink RF signal, and the other part is re-modulated by the uplink RF signal and the self-interference, which is then transmitted back to the CO for the signal down-conversion and SIC via the optical domain signal adjustment and balanced detection. The functions of SIC, frequency up-conversion, down-conversion, and fiber transmission with dispersion immunity are all incorporated in the system. An experiment is performed. Cancellation depths of more than 39 dB for the single-tone signal and more than 20 dB for the 20-MBaud 16 quadrature amplitude modulation signal are achieved in the back-to-back case. The performance of the system does not have a significant decline when a section of 4.1-km optical fiber is incorporated.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here