Phased Deep Spatio-temporal Learning for Highway Traffic Volume Prediction

11 Aug 2023  ·  Weilong Ding, Tianpu Zhang, Zhe Wang ·

Inter-city highway transportation is significant for citizens' modern urban life and generates heterogeneous sensory data with spatio-temporal characteristics. As a routine analysis in transportation domain, daily traffic volume estimation faces challenges for highway toll stations including lacking of exploration of correlative spatio-temporal features from a long-term perspective and effective means to deal with data imbalance which always deteriorates the predictive performance. In this paper, a deep spatio-temporal learning method is proposed to predict daily traffic volume in three phases. In feature pre-processing phase, data is normalized elaborately according to latent long-tail distribution. In spatio-temporal learning phase, a hybrid model is employed combining fully convolution network (FCN) and long short-term memory (LSTM), which considers time, space, meteorology, and calendar from heterogeneous data. In decision phase, traffic volumes on a coming day at network-wide toll stations would be achieved effectively, which is especially calibrated for vital few highway stations. Using real-world data from one Chinese provincial highway, extensive experiments show our method has distinct improvement for predictive accuracy than various traditional models, reaching 5.269 and 0.997 in MPAE and R-squre metrics, respectively.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods