Phase Collapse in Neural Networks

ICLR 2022  ·  Florentin Guth, John Zarka, Stéphane Mallat ·

Deep convolutional classifiers linearly separate image classes and improve accuracy as depth increases. They progressively reduce the spatial dimension whereas the number of channels grows with depth. Spatial variability is therefore transformed into variability along channels. A fundamental challenge is to understand the role of non-linearities together with convolutional filters in this transformation. ReLUs with biases are often interpreted as thresholding operators that improve discrimination through sparsity. This paper demonstrates that it is a different mechanism called phase collapse which eliminates spatial variability while linearly separating classes. We show that collapsing the phases of complex wavelet coefficients is sufficient to reach the classification accuracy of ResNets of similar depths. However, replacing the phase collapses with thresholding operators that enforce sparsity considerably degrades the performance. We explain these numerical results by showing that the iteration of phase collapses progressively improves separation of classes, as opposed to thresholding non-linearities.

PDF Abstract ICLR 2022 PDF ICLR 2022 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here