Permutation invariant networks to learn Wasserstein metrics

Understanding the space of probability measures on a metric space equipped with a Wasserstein distance is one of the fundamental questions in mathematical analysis. The Wasserstein metric has received a lot of attention in the machine learning community especially for its principled way of comparing distributions. In this work, we use a permutation invariant network to map samples from probability measures into a low-dimensional space such that the Euclidean distance between the encoded samples reflects the Wasserstein distance between probability measures. We show that our network can generalize to correctly compute distances between unseen densities. We also show that these networks can learn the first and the second moments of probability distributions.

PDF Abstract NeurIPS Workshop 2020 PDF NeurIPS Workshop 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here