Performing Deep Recurrent Double Q-Learning for Atari Games

16 Aug 2019 Felipe Moreno-Vera

Currently, many applications in Machine Learning are based on define new models to extract more information about data, In this case Deep Reinforcement Learning with the most common application in video games like Atari, Mario, and others causes an impact in how to computers can learning by himself with only information called rewards obtained from any action. There is a lot of algorithms modeled and implemented based on Deep Recurrent Q-Learning proposed by DeepMind used in AlphaZero and Go... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Sigmoid Activation
Activation Functions
Tanh Activation
Activation Functions
AlphaZero
Board Game Models
Double Q-learning
Off-Policy TD Control
Q-Learning
Off-Policy TD Control
LSTM
Recurrent Neural Networks