Perception-based energy functions in seam-cutting

22 Jan 2017  ·  Nan Li, Tianli Liao, Chao Wang ·

Image stitching is challenging in consumer-level photography, due to alignment difficulties in unconstrained shooting environment. Recent studies show that seam-cutting approaches can effectively relieve artifacts generated by local misalignment. Normally, seam-cutting is described in terms of energy minimization, however, few of existing methods consider human perception in their energy functions, which sometimes causes that a seam with minimum energy is not most invisible in the overlapping region. In this paper, we propose a novel perception-based energy function in the seam-cutting framework, which considers the nonlinearity and the nonuniformity of human perception in energy minimization. Our perception-based approach adopts a sigmoid metric to characterize the perception of color discrimination, and a saliency weight to simulate that human eyes incline to pay more attention to salient objects. In addition, our seam-cutting composition can be easily implemented into other stitching pipelines. Experiments show that our method outperforms the seam-cutting method of the normal energy function, and a user study demonstrates that our composed results are more consistent with human perception.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here