Peer-to-Peer Learning + Consensus with Non-IID Data

21 Dec 2023  ·  Srinivasa Pranav, José M. F. Moura ·

Peer-to-peer deep learning algorithms are enabling distributed edge devices to collaboratively train deep neural networks without exchanging raw training data or relying on a central server. Peer-to-Peer Learning (P2PL) and other algorithms based on Distributed Local-Update Stochastic/mini-batch Gradient Descent (local DSGD) rely on interleaving epochs of training with distributed consensus steps. This process leads to model parameter drift/divergence amongst participating devices in both IID and non-IID settings. We observe that model drift results in significant oscillations in test performance evaluated after local training and consensus phases. We then identify factors that amplify performance oscillations and demonstrate that our novel approach, P2PL with Affinity, dampens test performance oscillations in non-IID settings without incurring any additional communication cost.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here