Path differentiability of ODE flows

11 Jan 2022  ·  Swann Marx, Edouard Pauwels ·

We consider flows of ordinary differential equations (ODEs) driven by path differentiable vector fields. Path differentiable functions constitute a proper subclass of Lipschitz functions which admit conservative gradients, a notion of generalized derivative compatible with basic calculus rules. Our main result states that such flows inherit the path differentiability property of the driving vector field. We show indeed that forward propagation of derivatives given by the sensitivity differential inclusions provide a conservative Jacobian for the flow. This allows to propose a nonsmooth version of the adjoint method, which can be applied to integral costs under an ODE constraint. This result constitutes a theoretical ground to the application of small step first order methods to solve a broad class of nonsmooth optimization problems with parametrized ODE constraints. This is illustrated with the convergence of small step first order methods based on the proposed nonsmooth adjoint.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here