Pascal conductance series in ballistic one-dimensional LaAlO$_3$/SrTiO$_3$ channels

12 Sep 2019  ·  Megan Briggeman, Michelle Tomczyk, Binbin Tian, Hyungwoo Lee, Jung-Woo Lee, Yuchi He, Anthony Tylan-Tyler, Mengchen Huang, Chang-Beom Eom, David Pekker, Roger S. K. Mong, Patrick Irvin, Jeremy Levy ·

The ability to create and investigate composite fermionic phases opens new avenues for the investigation of strongly correlated quantum matter. We report the experimental observation of a series of quantized conductance steps within strongly interacting electron waveguides formed at the LaAlO$_3$/SrTiO$_3$ interface. The waveguide conductance follows a characteristic sequence within Pascal's triangle: $(1, 3, 6, 10, 15, ...)\cdot e^2/h$, where $e$ is the electron charge and $h$ is the Planck constant. The robustness of these steps with respect to magnetic field and gate voltage indicate the formation of a new family of degenerate quantum liquids formed from bound states of $n = 2, 3, 4, ...$ electrons. These experiments could provide solid-state analogues for a wide range of composite fermionic phases ranging from neutron stars to solid-state materials to quark-gluon plasmas.

PDF Abstract