Parsimonious Identification of Continuous-Time Systems: A Block-Coordinate Descent Approach

6 Apr 2023  ·  Rodrigo A. González, Cristian R. Rojas, Siqi Pan, James S. Welsh ·

The identification of electrical, mechanical, and biological systems using data can benefit greatly from prior knowledge extracted from physical modeling. Parametric continuous-time identification methods can naturally incorporate this knowledge, which leads to interpretable and parsimonious models. However, some applications lead to model structures that lack parsimonious descriptions using unfactored transfer functions, which are commonly used in standard direct approaches for continuous-time system identification. In this paper we characterize this parsimony problem, and develop a block-coordinate descent algorithm that delivers parsimonious models by sequentially estimating an additive decomposition of the transfer function of interest. Numerical simulations show the efficacy of the proposed approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here