Pareto Meets Huber: Efficiently Avoiding Poor Minima in Robust Estimation

ICCV 2019  ·  Christopher Zach, Guillaume Bourmaud ·

Robust cost optimization is the task of fitting parameters to data points containing outliers. In particular, we focus on large-scale computer vision problems, such as bundle adjustment, where Non-Linear Least Square (NLLS) solvers are the current workhorse. In this context, NLLS-based state of the art algorithms have been designed either to quickly improve the target objective and find a local minimum close to the initial value of the parameters, or to have a strong ability to escape poor local minima. In this paper, we propose a novel algorithm relying on multi-objective optimization which allows to match those two properties. We experimentally demonstrate that our algorithm has an ability to escape poor local minima that is on par with the best performing algorithms with a faster decrease of the target objective.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here