Parallel compressive super-resolution imaging with wide field-of-view based on physics enhanced network

Achieving both high-performance and wide field-of-view (FOV) super-resolution imaging has been attracting increasing attention in recent years. However, such goal suffers from long reconstruction time and huge storage space. Parallel compressive imaging (PCI) provides an efficient solution, but the super-resolution quality and imaging speed are strongly dependent on precise optical transfer function (OTF), modulation masks and reconstruction algorithm. In this work, we propose a wide FOV parallel compressive super-resolution imaging approach based on physics enhanced network. By training the network with the prior OTF of an arbitrary 128x128-pixel region and fine-tuning the network with other OTFs within rest regions of FOV, we realize both mask optimization and super-resolution imaging with up to 1020x1500 wide FOV. Numerical simulations and practical experiments demonstrate the effectiveness and superiority of the proposed approach. We achieve high-quality reconstruction with 4x4 times super-resolution enhancement using only three designed masks to reach real-time imaging speed. The proposed approach promotes the technology of rapid imaging for super-resolution and wide FOV, ranging from infrared to Terahertz.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods