Deep learning-based approach to reveal tumor mutational burden status from whole slide images across multiple cancer types

Tumor mutational burden (TMB) is a potential genomic biomarker of immunotherapy. However, TMB detected through whole exome sequencing lacks clinical penetration in low-resource settings. In this study, we proposed a multi-scale deep learning framework to address the detection of TMB status from routinely used whole slide images for a multiple cancer TMB prediction model (MC- TMB). The MC-TMB achieved a mean area under the curve (AUC) of 0.818 (0.804-0.831) in the cross-validation cohort, which showed superior performance to each single-scale model. The improvements of MC-TMB over the single-tumor models were also confirmed by the ablation tests on x10 magnification, and the highly concerned regions typically correspond to dense lymphocytic infiltration and heteromorphic tumor cells. MC-TMB algorithm also exhibited good generalization on the external validation cohort with an AUC of 0.732 (0.683-0.761), and better performance when compared to other methods. In conclusion, we proposed a deep learning-based approach to reveal tumor mutational burden status from routinely used pathological slides across multiple cancer types.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here