PAC-Bayes Un-Expected Bernstein Inequality

We present a new PAC-Bayesian generalization bound. Standard bounds contain a $\sqrt{L_n \cdot \KL/n}$ complexity term which dominates unless $L_n$, the empirical error of the learning algorithm's randomized predictions, vanishes. We manage to replace $L_n$ by a term which vanishes in many more situations, essentially whenever the employed learning algorithm is sufficiently stable on the dataset at hand. Our new bound consistently beats state-of-the-art bounds both on a toy example and on UCI datasets (with large enough $n$). Theoretically, unlike existing bounds, our new bound can be expected to converge to $0$ faster whenever a Bernstein/Tsybakov condition holds, thus connecting PAC-Bayesian generalization and {\em excess risk\/} bounds---for the latter it has long been known that faster convergence can be obtained under Bernstein conditions. Our main technical tool is a new concentration inequality which is like Bernstein's but with $X^2$ taken outside its expectation.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here