Overparametrized linear dimensionality reductions: From projection pursuit to two-layer neural networks

14 Jun 2022  ·  Andrea Montanari, Kangjie Zhou ·

Given a cloud of $n$ data points in $\mathbb{R}^d$, consider all projections onto $m$-dimensional subspaces of $\mathbb{R}^d$ and, for each such projection, the empirical distribution of the projected points. What does this collection of probability distributions look like when $n,d$ grow large? We consider this question under the null model in which the points are i.i.d. standard Gaussian vectors, focusing on the asymptotic regime in which $n,d\to\infty$, with $n/d\to\alpha\in (0,\infty)$, while $m$ is fixed. Denoting by $\mathscr{F}_{m, \alpha}$ the set of probability distributions in $\mathbb{R}^m$ that arise as low-dimensional projections in this limit, we establish new inner and outer bounds on $\mathscr{F}_{m, \alpha}$. In particular, we characterize the Wasserstein radius of $\mathscr{F}_{m,\alpha}$ up to logarithmic factors, and determine it exactly for $m=1$. We also prove sharp bounds in terms of Kullback-Leibler divergence and R\'{e}nyi information dimension. The previous question has application to unsupervised learning methods, such as projection pursuit and independent component analysis. We introduce a version of the same problem that is relevant for supervised learning, and prove a sharp Wasserstein radius bound. As an application, we establish an upper bound on the interpolation threshold of two-layers neural networks with $m$ hidden neurons.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here