OTTR: Off-Road Trajectory Tracking using Reinforcement Learning

5 Oct 2021  ·  Akhil Nagariya, Dileep Kalathil, Srikanth Saripalli ·

In this work, we present a novel Reinforcement Learning (RL) algorithm for the off-road trajectory tracking problem. Off-road environments involve varying terrain types and elevations, and it is difficult to model the interaction dynamics of specific off-road vehicles with such a diverse and complex environment. Standard RL policies trained on a simulator will fail to operate in such challenging real-world settings. Instead of using a naive domain randomization approach, we propose an innovative supervised-learning based approach for overcoming the sim-to-real gap problem. Our approach efficiently exploits the limited real-world data available to adapt the baseline RL policy obtained using a simple kinematics simulator. This avoids the need for modeling the diverse and complex interaction of the vehicle with off-road environments. We evaluate the performance of the proposed algorithm using two different off-road vehicles, Warthog and Moose. Compared to the standard ILQR approach, our proposed approach achieves a 30% and 50% reduction in cross track error in Warthog and Moose, respectively, by utilizing only 30 minutes of real-world driving data.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here