Orthogonal Directions Constrained Gradient Method: from non-linear equality constraints to Stiefel manifold

16 Mar 2023  ·  Sholom Schechtman, Daniil Tiapkin, Michael Muehlebach, Eric Moulines ·

We consider the problem of minimizing a non-convex function over a smooth manifold $\mathcal{M}$. We propose a novel algorithm, the Orthogonal Directions Constrained Gradient Method (ODCGM) which only requires computing a projection onto a vector space. ODCGM is infeasible but the iterates are constantly pulled towards the manifold, ensuring the convergence of ODCGM towards $\mathcal{M}$. ODCGM is much simpler to implement than the classical methods which require the computation of a retraction. Moreover, we show that ODCGM exhibits the near-optimal oracle complexities $\mathcal{O}(1/\varepsilon^2)$ and $\mathcal{O}(1/\varepsilon^4)$ in the deterministic and stochastic cases, respectively. Furthermore, we establish that, under an appropriate choice of the projection metric, our method recovers the landing algorithm of Ablin and Peyr\'e (2022), a recently introduced algorithm for optimization over the Stiefel manifold. As a result, we significantly extend the analysis of Ablin and Peyr\'e (2022), establishing near-optimal rates both in deterministic and stochastic frameworks. Finally, we perform numerical experiments which shows the efficiency of ODCGM in a high-dimensional setting.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here