Optimizing Large-Scale Fleet Management on a Road Network using Multi-Agent Deep Reinforcement Learning with Graph Neural Network

12 Nov 2020  ·  Juhyeon Kim, Kihyun Kim ·

We propose a novel approach to optimize fleet management by combining multi-agent reinforcement learning with graph neural network. To provide ride-hailing service, one needs to optimize dynamic resources and demands over spatial domain. While the spatial structure was previously approximated with a regular grid, our approach represents the road network with a graph, which better reflects the underlying geometric structure. Dynamic resource allocation is formulated as multi-agent reinforcement learning, whose action-value function (Q function) is approximated with graph neural networks. We use stochastic policy update rule over the graph with deep Q-networks (DQN), and achieve superior results over the greedy policy update. We design a realistic simulator that emulates the empirical taxi call data, and confirm the effectiveness of the proposed model under various conditions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods