Optimized Parameter Design for Channel State Information-Free Location Spoofing

1 Feb 2024  ·  Jianxiu Li, Urbashi Mitra ·

In this paper, an augmented analysis of a delay-angle information spoofing (DAIS) is provided for location-privacy preservation, where the location-relevant delays and angles are artificially shifted to obfuscate the eavesdropper with an incorrect physical location. A simplified mismatched Cramer-Rao bound (MCRB) is derived, which clearly manifests that not only estimation error, but also the geometric mismatch introduced by DAIS can lead to a significant increase in localization error for an eavesdropper. Given an assumption of the orthogonality among wireless paths, the simplified MCRB can be further expressed as a function of delay-angle shifts in a closed-form, which enables the more straightforward optimization of these design parameters for location-privacy enhancement. Numerical results are provided, validating the theoretical analysis and showing that the root-mean-square error for eavesdropper's localization can be more than 150 m with the optimized delay-angle shifts for DAIS.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here