Optimization for Large-Scale Machine Learning with Distributed Features and Observations

31 Oct 2016  ·  Alexandros Nathan, Diego Klabjan ·

As the size of modern data sets exceeds the disk and memory capacities of a single computer, machine learning practitioners have resorted to parallel and distributed computing. Given that optimization is one of the pillars of machine learning and predictive modeling, distributed optimization methods have recently garnered ample attention in the literature. Although previous research has mostly focused on settings where either the observations, or features of the problem at hand are stored in distributed fashion, the situation where both are partitioned across the nodes of a computer cluster (doubly distributed) has barely been studied. In this work we propose two doubly distributed optimization algorithms. The first one falls under the umbrella of distributed dual coordinate ascent methods, while the second one belongs to the class of stochastic gradient/coordinate descent hybrid methods. We conduct numerical experiments in Spark using real-world and simulated data sets and study the scaling properties of our methods. Our empirical evaluation of the proposed algorithms demonstrates the out-performance of a block distributed ADMM method, which, to the best of our knowledge is the only other existing doubly distributed optimization algorithm.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods