Optimization-based Heuristic for Vehicle Dynamic Coordination in Mixed Traffic Intersections

22 Apr 2024  ·  Muhammad Faris, Mario Zanon, Paolo Falcone ·

In this paper, we address a coordination problem for connected and autonomous vehicles (CAVs) in mixed traffic settings with human-driven vehicles (HDVs). The main objective is to have a safe and optimal crossing order for vehicles approaching unsignalized intersections. This problem results in a mixed-integer quadratic programming (MIQP) formulation which is unsuitable for real-time applications. Therefore, we propose a computationally tractable optimization-based heuristic that monitors platoons of CAVs and HDVs to evaluate whether alternative crossing orders can perform better. It first checks the future constraint violation that consistently occurs between pairs of platoons to determine a potential swap. Next, the costs of quadratic programming (QP) formulations associated with the current and alternative orders are compared in a depth-first branching fashion. In simulations, we show that the heuristic can be a hundred times faster than the original and simplified MIQPs and yields solutions that are close to optimal and have better order consistency.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here