Optimally Combining Classifiers for Semi-Supervised Learning

7 Jun 2020  ·  Zhiguo Wang, Liusha Yang, Feng Yin, Ke Lin, Qingjiang Shi, Zhi-Quan Luo ·

This paper considers semi-supervised learning for tabular data. It is widely known that Xgboost based on tree model works well on the heterogeneous features while transductive support vector machine can exploit the low density separation assumption. However, little work has been done to combine them together for the end-to-end semi-supervised learning. In this paper, we find these two methods have complementary properties and larger diversity, which motivates us to propose a new semi-supervised learning method that is able to adaptively combine the strengths of Xgboost and transductive support vector machine. Instead of the majority vote rule, an optimization problem in terms of ensemble weight is established, which helps to obtain more accurate pseudo labels for unlabeled data. The experimental results on the UCI data sets and real commercial data set demonstrate the superior classification performance of our method over the five state-of-the-art algorithms improving test accuracy by about $3\%-4\%$. The partial code can be found at https://github.com/hav-cam-mit/CTO.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here