Optimal scheduling of park-level integrated energy system considering ladder-type carbon trading mechanism and flexible load

3 Mar 2023  ·  Hongbin Sun, Xinmei Sun, Lei Kou, Benfa Zhang, Xiaodan Zhu ·

In an attempt to improve the utilization efficiency of multi-energy coupling in park-level integrated energy system (PIES), promote wind power consumption and reduce carbon emissions, a low-carbon economic operation optimization model of PIES integrating flexible load and carbon trading mechanism is constructed. Firstly, according to the characteristics of load response, the demand response is divided into four types: which can be shifted, transferred, reduced and replaced. Secondly, the PIES basic architecture is given by considering the combined heat and power generation coupling equipment, new energy and flexible load in the park. Finally, introducing the ladder-type carbon trading mechanism into the system and minimize the total operating cost, the low-carbon economic operation optimization model of PIES is established. The YALMIP toolbox and CPLEX solver are used to solve the example, the simulation results show that the participation of electrical and thermal coupled scheduling and flexible electric or thermal loads can significantly reduce the system operating cost, reduce the load peak-to-valley difference and relieve peak power consumption pressure.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here