Optimal Sample Complexity of Reinforcement Learning for Mixing Discounted Markov Decision Processes

15 Feb 2023  ·  Shengbo Wang, Jose Blanchet, Peter Glynn ·

We consider the optimal sample complexity theory of tabular reinforcement learning (RL) for maximizing the infinite horizon discounted reward in a Markov decision process (MDP). Optimal worst-case complexity results have been developed for tabular RL problems in this setting, leading to a sample complexity dependence on $\gamma$ and $\epsilon$ of the form $\tilde \Theta((1-\gamma)^{-3}\epsilon^{-2})$, where $\gamma$ denotes the discount factor and $\epsilon$ is the solution error tolerance. However, in many applications of interest, the optimal policy (or all policies) induces mixing. We establish that in such settings, the optimal sample complexity dependence is $\tilde \Theta(t_{\text{mix}}(1-\gamma)^{-2}\epsilon^{-2})$, where $t_{\text{mix}}$ is the total variation mixing time. Our analysis is grounded in regeneration-type ideas, which we believe are of independent interest, as they can be used to study RL problems for general state space MDPs.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here