Optimal Change-Point Detection with Training Sequences in the Large and Moderate Deviations Regimes

13 Mar 2020  ·  Haiyun He, Qiaosheng Zhang, Vincent Y. F. Tan ·

This paper investigates a novel offline change-point detection problem from an information-theoretic perspective. In contrast to most related works, we assume that the knowledge of the underlying pre- and post-change distributions are not known and can only be learned from the training sequences which are available. We further require the probability of the \emph{estimation error} to decay either exponentially or sub-exponentially fast (corresponding respectively to the large and moderate deviations regimes in information theory parlance). Based on the training sequences as well as the test sequence consisting of a single change-point, we design a change-point estimator and further show that this estimator is optimal by establishing matching (strong) converses. This leads to a full characterization of the optimal confidence width (i.e., half the width of the confidence interval within which the true change-point is located at with high probability) as a function of the undetected error, under both the large and moderate deviations regimes.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here