Optimal dynamic climate adaptation pathways: a case study of New York City

5 Feb 2024  ·  Chi Truong, Matteo Malavasi, Han Li, Stefan Trueck, Pavel V. Shevchenko ·

Assessing climate risk and its potential impacts on our cities and economies is of fundamental importance. Extreme weather events, such as hurricanes, floods, and storm surges can lead to catastrophic damages. We propose a flexible approach based on real options analysis and extreme value theory, which enables the selection of optimal adaptation pathways for a portfolio of climate adaptation projects. We model the severity of extreme sea level events using the block maxima approach from extreme value theory, and then develop a real options framework, factoring in climate change, sea level rise uncertainty, and the growth in asset exposure. We then apply the proposed framework to a real-world problem, considering sea level data as well as different adaptation investment options for New York City. Our research can assist governments and policy makers in taking informed decisions about optimal adaptation pathways and more specifically about reducing flood and storm surge risk in a dynamic settings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here