OpEvo: An Evolutionary Method for Tensor Operator Optimization

10 Jun 2020  ·  Xiaotian Gao, Cui Wei, Lintao Zhang, Mao Yang ·

Training and inference efficiency of deep neural networks highly rely on the performance of tensor operators on hardware platforms. Manually optimizing tensor operators has limitations in terms of supporting new operators or hardware platforms. Therefore, automatically optimizing device code configurations of tensor operators is getting increasingly attractive. However, current methods for tensor operator optimization usually suffer from poor sample-efficiency due to the combinatorial search space. In this work, we propose a novel evolutionary method, OpEvo, which efficiently explores the search spaces of tensor operators by introducing a topology-aware mutation operation based on q-random walk to leverage the topological structures over the search spaces. Our comprehensive experiment results show that compared with state-of-the-art (SOTA) methods OpEvo can find the best configuration with the lowest variance and least efforts in the number of trials and wall-clock time. All code of this work is available online.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here