OpenDPD: An Open-Source End-to-End Learning & Benchmarking Framework for Wideband Power Amplifier Modeling and Digital Pre-Distortion

With the rise in communication capacity, deep neural networks (DNN) for digital pre-distortion (DPD) to correct non-linearity in wideband power amplifiers (PAs) have become prominent. Yet, there is a void in open-source and measurement-setup-independent platforms for fast DPD exploration and objective DPD model comparison. This paper presents an open-source framework, OpenDPD, crafted in PyTorch, with an associated dataset for PA modeling and DPD learning. We introduce a Dense Gated Recurrent Unit (DGRU)-DPD, trained via a novel end-to-end learning architecture, outperforming previous DPD models on a digital PA (DPA) in the new digital transmitter (DTX) architecture with unconventional transfer characteristics compared to analog PAs. Measurements show our DGRU-DPD achieves an ACPR of -44.69/-44.47 dBc and an EVM of -35.22 dB for 200 MHz OFDM signals. OpenDPD code, datasets, and documentation are publicly available at https://github.com/lab-emi/OpenDPD.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods