Open-sourced Dataset Protection via Backdoor Watermarking

12 Oct 2020  ·  Yiming Li, Ziqi Zhang, Jiawang Bai, Baoyuan Wu, Yong Jiang, Shu-Tao Xia ·

The rapid development of deep learning has benefited from the release of some high-quality open-sourced datasets ($e.g.$, ImageNet), which allows researchers to easily verify the effectiveness of their algorithms. Almost all existing open-sourced datasets require that they can only be adopted for academic or educational purposes rather than commercial purposes, whereas there is still no good way to protect them. In this paper, we propose a \emph{backdoor embedding based dataset watermarking} method to protect an open-sourced image-classification dataset by verifying whether it is used for training a third-party model. Specifically, the proposed method contains two main processes, including \emph{dataset watermarking} and \emph{dataset verification}. We adopt classical poisoning-based backdoor attacks ($e.g.$, BadNets) for dataset watermarking, ie, generating some poisoned samples by adding a certain trigger ($e.g.$, a local patch) onto some benign samples, labeled with a pre-defined target class. Based on the proposed backdoor-based watermarking, we use a hypothesis test guided method for dataset verification based on the posterior probability generated by the suspicious third-party model of the benign samples and their correspondingly watermarked samples ($i.e.$, images with trigger) on the target class. Experiments on some benchmark datasets are conducted, which verify the effectiveness of the proposed method.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here