Open Loop Hyperparameter Optimization and Determinantal Point Processes

ICLR 2018  ·  Jesse Dodge, Kevin Jamieson, Noah A. Smith ·

Driven by the need for parallelizable hyperparameter optimization methods, this paper studies \emph{open loop} search methods: sequences that are predetermined and can be generated before a single configuration is evaluated. Examples include grid search, uniform random search, low discrepancy sequences, and other sampling distributions. In particular, we propose the use of $k$-determinantal point processes in hyperparameter optimization via random search. Compared to conventional uniform random search where hyperparameter settings are sampled independently, a $k$-DPP promotes diversity. We describe an approach that transforms hyperparameter search spaces for efficient use with a $k$-DPP. In addition, we introduce a novel Metropolis-Hastings algorithm which can sample from $k$-DPPs defined over any space from which uniform samples can be drawn, including spaces with a mixture of discrete and continuous dimensions or tree structure. Our experiments show significant benefits in realistic scenarios with a limited budget for training supervised learners, whether in serial or parallel.

PDF Abstract ICLR 2018 PDF ICLR 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods