One Method to Rule Them All: Variance Reduction for Data, Parameters and Many New Methods

27 May 2019  ·  Filip Hanzely, Peter Richtárik ·

We propose a remarkably general variance-reduced method suitable for solving regularized empirical risk minimization problems with either a large number of training examples, or a large model dimension, or both. In special cases, our method reduces to several known and previously thought to be unrelated methods, such as {\tt SAGA}, {\tt LSVRG}, {\tt JacSketch}, {\tt SEGA} and {\tt ISEGA}, and their arbitrary sampling and proximal generalizations. However, we also highlight a large number of new specific algorithms with interesting properties. We provide a single theorem establishing linear convergence of the method under smoothness and quasi strong convexity assumptions. With this theorem we recover best-known and sometimes improved rates for known methods arising in special cases. As a by-product, we provide the first unified method and theory for stochastic gradient and stochastic coordinate descent type methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here