On Weight-Sharing and Bilevel Optimization in Architecture Search

25 Sep 2019  ·  Mikhail Khodak, Liam Li, Maria-Florina Balcan, Ameet Talwalkar ·

Weight-sharing—the simultaneous optimization of multiple neural networks using the same parameters—has emerged as a key component of state-of-the-art neural architecture search. However, its success is poorly understood and often found to be surprising. We argue that, rather than just being an optimization trick, the weight-sharing approach is induced by the relaxation of a structured hypothesis space, and introduces new algorithmic and theoretical challenges as well as applications beyond neural architecture search. Algorithmically, we show how the geometry of ERM for weight-sharing requires greater care when designing gradient- based minimization methods and apply tools from non-convex non-Euclidean optimization to give general-purpose algorithms that adapt to the underlying structure. We further analyze the learning-theoretic behavior of the bilevel optimization solved by practical weight-sharing methods. Next, using kernel configuration and NLP feature selection as case studies, we demonstrate how weight-sharing applies to the architecture search generalization of NAS and effectively optimizes the resulting bilevel objective. Finally, we use our optimization analysis to develop a simple exponentiated gradient method for NAS that aligns with the underlying optimization geometry and matches state-of-the-art approaches on CIFAR-10.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods