On Uncertainty Quantification for Near-Bayes Optimal Algorithms

28 Mar 2024  ·  Ziyu Wang, Chris Holmes ·

Bayesian modelling allows for the quantification of predictive uncertainty which is crucial in safety-critical applications. Yet for many machine learning (ML) algorithms, it is difficult to construct or implement their Bayesian counterpart. In this work we present a promising approach to address this challenge, based on the hypothesis that commonly used ML algorithms are efficient across a wide variety of tasks and may thus be near Bayes-optimal w.r.t. an unknown task distribution. We prove that it is possible to recover the Bayesian posterior defined by the task distribution, which is unknown but optimal in this setting, by building a martingale posterior using the algorithm. We further propose a practical uncertainty quantification method that apply to general ML algorithms. Experiments based on a variety of non-NN and NN algorithms demonstrate the efficacy of our method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here