On the rate of convergence of fully connected very deep neural network regression estimates

29 Aug 2019  ·  Michael Kohler, Sophie Langer ·

Recent results in nonparametric regression show that deep learning, i.e., neural network estimates with many hidden layers, are able to circumvent the so-called curse of dimensionality in case that suitable restrictions on the structure of the regression function hold. One key feature of the neural networks used in these results is that their network architecture has a further constraint, namely the network sparsity. In this paper we show that we can get similar results also for least squares estimates based on simple fully connected neural networks with ReLU activation functions. Here either the number of neurons per hidden layer is fixed and the number of hidden layers tends to infinity suitably fast for sample size tending to infinity, or the number of hidden layers is bounded by some logarithmic factor in the sample size and the number of neurons per hidden layer tends to infinity suitably fast for sample size tending to infinity. The proof is based on new approximation results concerning deep neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods