On the Minimization of Sobolev Norms of Time-Varying Graph Signals: Estimation of New Coronavirus Disease 2019 Cases

1 Jul 2020  ·  Jhony H. Giraldo, Thierry Bouwmans ·

The mathematical modeling of infectious diseases is a fundamental research field for the planning of strategies to contain outbreaks. The models associated with this field of study usually have exponential prior assumptions in the number of new cases, while the exploration of spatial data has been little analyzed in these models. In this paper, we model the number of new cases of the Coronavirus Disease 2019 (COVID-19) as a problem of reconstruction of time-varying graph signals. To this end, we proposed a new method based on the minimization of the Sobolev norm in graph signal processing. Our method outperforms state-of-the-art algorithms in two COVID-19 databases provided by Johns Hopkins University. In the same way, we prove the benefits of the convergence rate of the Sobolev reconstruction method by relying on the condition number of the Hessian associated with the underlying optimization problem of our method.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here