On the Local Hessian in Back-propagation

NeurIPS 2018  ·  Huishuai Zhang, Wei Chen, Tie-Yan Liu ·

Back-propagation (BP) is the foundation for successfully training deep neural networks. However, BP sometimes has difficulties in propagating a learning signal deep enough effectively, e.g., the vanishing gradient phenomenon. Meanwhile, BP often works well when combining with ``designing tricks'' like orthogonal initialization, batch normalization and skip connection. There is no clear understanding on what is essential to the efficiency of BP. In this paper, we take one step towards clarifying this problem. We view BP as a solution of back-matching propagation which minimizes a sequence of back-matching losses each corresponding to one block of the network. We study the Hessian of the local back-matching loss (local Hessian) and connect it to the efficiency of BP. It turns out that those designing tricks facilitate BP by improving the spectrum of local Hessian. In addition, we can utilize the local Hessian to balance the training pace of each block and design new training algorithms. Based on a scalar approximation of local Hessian, we propose a scale-amended SGD algorithm. We apply it to train neural networks with batch normalization, and achieve favorable results over vanilla SGD. This corroborates the importance of local Hessian from another side.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods