On the influence of over-parameterization in manifold based surrogates and deep neural operators

9 Mar 2022  ·  Katiana Kontolati, Somdatta Goswami, Michael D. Shields, George Em Karniadakis ·

Constructing accurate and generalizable approximators for complex physico-chemical processes exhibiting highly non-smooth dynamics is challenging. In this work, we propose new developments and perform comparisons for two promising approaches: manifold-based polynomial chaos expansion (m-PCE) and the deep neural operator (DeepONet), and we examine the effect of over-parameterization on generalization. We demonstrate the performance of these methods in terms of generalization accuracy by solving the 2D time-dependent Brusselator reaction-diffusion system with uncertainty sources, modeling an autocatalytic chemical reaction between two species. We first propose an extension of the m-PCE by constructing a mapping between latent spaces formed by two separate embeddings of input functions and output QoIs. To enhance the accuracy of the DeepONet, we introduce weight self-adaptivity in the loss function. We demonstrate that the performance of m-PCE and DeepONet is comparable for cases of relatively smooth input-output mappings. However, when highly non-smooth dynamics is considered, DeepONet shows higher accuracy. We also find that for m-PCE, modest over-parameterization leads to better generalization, both within and outside of distribution, whereas aggressive over-parameterization leads to over-fitting. In contrast, an even highly over-parameterized DeepONet leads to better generalization for both smooth and non-smooth dynamics. Furthermore, we compare the performance of the above models with another operator learning model, the Fourier Neural Operator, and show that its over-parameterization also leads to better generalization. Our studies show that m-PCE can provide very good accuracy at very low training cost, whereas a highly over-parameterized DeepONet can provide better accuracy and robustness to noise but at higher training cost. In both methods, the inference cost is negligible.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here